Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Pathogens ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242403

RESUMO

The declining honeybee populations are a significant risk to the productivity and security of agriculture worldwide. Although there are many causes of these declines, parasites are a significant one. Disease glitches in honeybees have been identified in recent years and increasing attention has been paid to addressing the issue. Between 30% and 40% of all managed honeybee colonies in the USA have perished annually over the past few years. American foulbrood (AFB) and European foulbrood (EFB) have been reported as bacterial diseases, Nosema as a protozoan disease, and Chalkbrood and Stonebrood as fungal diseases. The study aims to compare the bacterial community related to the Nosema ceranae and Ascosphaera apis infection on the gut of the honeybee and compare it with the weakly active honeybees. The Nosema-infected honeybees contain the phyla Proteobacteria as the significantly dominant bacterial phyla, similar to the weakly active honeybees. In contrast, the Ascosphaera (Chalkbrood) infected honeybee contains large amounts of Firmicutes rather than Proteobacteria.

2.
Adv Mater ; 35(1): e2206764, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314392

RESUMO

Light manipulation strategies of nature have fascinated humans for centuries. In particular, structural colors are of considerable interest due to their ability to control the interaction between light and matter. Here, wrinkled photonic crystal papers (PCPs) are fabricated to demonstrate the consistent reflection of colors regardless of viewing angles. The nanoscale molecular self-assembly of a cholesteric liquid crystal (CLC) with a microscale corrugated surface is combined. Fully polymerizable CLC paints are uniaxially coated onto a wrinkled interpenetrating polymer network (IPN) substrate. Photopolymerization of the helicoidal nanostructures results in a flexible and free-standing PCP. The facile method of fabricating the wrinkled PCPs provides a scalable route for the development of novel chirophotonic materials with precisely controlled helical pitch and curvature dimensions. The reflection notch position of the flat PCP shifts to a lower wavelength when the viewing angle increased, while the selective reflection wavelength of wrinkled PCP is remained consistent regardless of viewing angles. The optical reflection of the 1D stripe-wrinkled PCP is dependent on the wrinkle direction. PCPs with different corrugated directions can be patterned to reduce the angular-dependent optical reflection of wrinkles. Furthermore, 2D wavy-wrinkled PCP is successfully developed that exhibit directionally independent reflection of color.

3.
Taehan Yongsang Uihakhoe Chi ; 83(1): 199-205, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36237365

RESUMO

Developmental venous anomalies (DVAs) are common intracranial vascular malformations and they are generally do not cause clinical complications. In cases showing DVA and hemorrhage, the hemorrhage is usually associated with adjacent cavernous malformations. Very few cases of intracerebral hemorrhage (ICH) caused by thrombosis in DVA have been reported in the literature. In this case report, we present an interesting case of a large ICH caused by thrombosis within a DVA with an unusual structure that may have potentiated the thrombosis.

4.
J Korean Soc Radiol ; 83(4): 951-957, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36238912

RESUMO

Meningiomas are the most common intracranial tumors. However, microcystic and angiomatous meningiomas are very rare subtypes that present unusual imaging findings. Hence, radiological diagnosis of these tumors can be challenging. We herein describe a case of mixed angiomatous and microcystic meningioma in an 81-year-old male. MRI revealed an extra-axial mass with high T2 signal intensity, measuring 1.5 cm in diameter, with multiple tiny intralesional cysts and entrapped peritumoral cyst formation. After tumor resection, a histopathological diagnosis of mixed angiomatous and microcystic meningioma was made.

5.
Adv Sci (Weinh) ; 9(29): e2203008, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988149

RESUMO

Individual carbon nanotubes (CNT) and graphene have unique mechanical and electrical properties; however, the properties of their macroscopic assemblies have not met expectations because of limited physical dimensions, the limited degree of dispersion of the components, and various structural defects. Here, a state-of-the-art assembly for a novel type of hybrid fiber possessing the properties required for a wide variety of multifunctional applications is presented. A simple and effective multidimensional nanostructure of CNT and graphene oxide (GO) assembled by solution processing improves the interfacial utilization of the components. Flexible GOs are effectively intercalated between nanotubes along the shape of CNTs, which reduces voids, enhances orientation, and maximizes the contact between elements. The microstructure is finely controlled by the elements content ratio and dimensions, and an optimal balance improves the mechanical properties. The hybrid fibers simultaneously exhibit exceptional strength (6.05 GPa), modulus (422 GPa), toughness (76.8 J g-1 ), electrical conductivity (8.43 MS m-1 ), and knot strength efficiency (92%). Furthermore, surface and electrochemical properties are significantly improved by tuning the GO content, further expanding the scope of applications. These hybrid fibers are expected to offer a strategy for overcoming the limitations of existing fibers in meeting the requirements for applications in the fiber industry.

6.
Adv Mater ; 34(31): e2203040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35697021

RESUMO

Intrinsically stretchable organic light-emitting diodes (ISOLEDs) are becoming essential components of wearable electronics. However, the efficiencies of ISOLEDs have been highly inferior compared with their rigid counterparts, which is due to the lack of ideal stretchable electrode materials that can overcome the poor charge injection at 1D metallic nanowire/organic interfaces. Herein, highly efficient ISOLEDs that use graphene-based 2D-contact stretchable electrodes (TCSEs) that incorporate a graphene layer on top of embedded metallic nanowires are demonstrated. The graphene layer modifies the work function, promotes charge spreading, and impedes inward diffusion of oxygen and moisture. The work function (WF) of 3.57 eV is achieved by forming a strong interfacial dipole after deposition of a newly designed conjugated polyelectrolyte with crown ether and anionic sulfonate groups on TCSE; this is the lowest value ever reported among ISOLEDs, which overcomes the existing problem of very poor electron injection in ISOLEDs. Subsequent pressure-controlled lamination yields a highly efficient fluorescent ISOLED with an unprecedently high current efficiency of 20.3 cd A-1 , which even exceeds that of an otherwise-identical rigid counterpart. Lastly, a 3 inch five-by-five passive matrix ISOLED is demonstrated using convex stretching. This work can provide a rational protocol for designing intrinsically stretchable high-efficiency optoelectronic devices with favorable interfacial electronic structures.

7.
Sci Adv ; 8(16): eabn0939, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452295

RESUMO

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.

8.
Nat Commun ; 12(1): 7340, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930925

RESUMO

Self-assembly of small molecules in water provides a powerful route to nanostructures with pristine molecular organization and small dimensions (<10 nm). Such assemblies represent emerging high surface area nanomaterials, customizable for biomedical and energy applications. However, to exploit self-assembly, the constituent molecules must be sufficiently amphiphilic and satisfy prescribed packing criteria, dramatically limiting the range of surface chemistries achievable. Here, we design supramolecular nanoribbons that contain: (1) inert and stable internal domains, and (2) sacrificial surface groups that are thermally labile, and we demonstrate complete thermal decomposition of the nanoribbon surfaces. After heating, the remainder of each constituent molecule is kinetically trapped, nanoribbon morphology and internal organization are maintained, and the nanoribbons are fully hydrophobic. This approach represents a pathway to form nanostructures that circumvent amphiphilicity and packing parameter constraints and generates structures that are not achievable by self-assembly alone, nor top-down approaches, broadening the utility of molecular nanomaterials for new targets.

9.
Mater Horiz ; 8(5): 1561-1569, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846464

RESUMO

A self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at the molecular level was transferred and amplified to the phase transition of Si-CSM, resulting in changes in the macroscopic optical properties of the Si-CSM thin film. The self-crosslinking reaction between Si-H groups in the Si-CSM polymer backbone caused the self-crosslinked Si-CSM thin film to be very elastic and both thermally and chemically stable. Therefore, the self-crosslinked Si-CSM thin film endured stretching and bending deformations under relatively harsh conditions. In addition, the uniaxially oriented and self-crosslinked Si-CSM thin film generated linearly polarized light emission. Polarization-dependent and photopatternable secret coatings were fabricated via a spontaneous self-crosslinking reaction after coating the Si-CSM paint and irradiating ultraviolet (UV) light through a photomask. This newly developed flexible optical Si-CSM paint can be applied in next-generation optical coatings.


Assuntos
Cristais Líquidos , Siloxanas , Pintura , Transição de Fase , Polímeros
10.
ACS Appl Mater Interfaces ; 13(26): 31206-31214, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162200

RESUMO

A series of diketopyrrolopyrrole (DPP) luminogen amphiphiles were newly designed and synthesized by a single-step anionic exchange reaction for controlling the photoluminescence properties in both solution and solid states. Multicolor emission in response to thermal, mechanical, and chemical stimuli was successfully demonstrated by engineering well-defined supramolecular assemblies. Phase transformation from the metastable amorphous solid to the stable orthorhombic crystal of [DP-Im][Br] provided the reversibly patternable light emission. Self-organization into the smectic crystalline phase of [DP-Im][TFSI] allowed us to show the linearly polarized light emission. By simultaneously applying [DP-Im][Br] and [DP-Im][TFSI], we demonstrated the fabrication of smart sensors for packaging of food or vaccines that can detect thermal attacks.

11.
Nano Lett ; 21(7): 2912-2918, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33733794

RESUMO

Self-assembly of small amphiphilic molecules in water can lead to nanostructures of varying geometries with pristine internal molecular organization. Here we introduce a photoswitchable aramid amphiphile (AA), designed to exhibit extensive hydrogen bonding and robust mechanical properties upon self-assembly, while containing a vinylnitrile group for photoinduced cis-trans isomerization. We demonstrate spontaneous self-assembly of the vinylnitrile-containing AA in water to form nanoribbons. Upon UV irradiation, trans-to-cis isomerizations occur concomitantly with a morphological transition from nanoribbons to nanotubes. The nanotube structure persists in water for over six months, stabilized by strong and collective intermolecular interactions. We demonstrate that the nanoribbon-to-nanotube transition is reversible upon heating and that switching between states can be achieved repeatedly. Finally, we use electron microscopy to capture the transition and propose mechanisms for nanoribbon-to-nanotube rearrangement and vice versa. The stability and switchability of photoresponsive AA nanostructures make them viable for a range of future applications.

12.
Nat Nanotechnol ; 16(4): 447-454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462430

RESUMO

Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.

13.
J Mol Histol ; 52(1): 63-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33141361

RESUMO

Much information is currently available for molecules in early odontogenesis, but there is limited knowledge regarding terminal cytodifferentiation of ameloblasts and odontoblasts for the determination of normal crown morphology. The present differential display PCR (DD-PCR) revealed that insulin-like growth factor-binding protein 5 (IGFBP5) was differentially expressed in molar tooth germs between the cap (before crown mineralization) and root formation (after crown mineralization) stages. Real-time PCR confirmed that the expression levels of IGFBP1-4 were not significantly changed but those of IGFBP5-7 were upregulated in a time-dependent manner. Immunoreactivities for IGFBP5-7 were hardly seen in molar germs at the cap/early bell stage and protective-stage ameloblasts at the root formation stage. However, the reactivity was strong in odontoblasts and maturation-stage ameloblasts, which are morphologically and functionally characterized by wide intercellular space and active enamel matrix mineralization. The localization of each IGFBP was temporospatial. IGFBP5 was localized in the nuclei of fully differentiated odontoblasts and ameloblasts, while IGFBP6 was localized in the apical cytoplasm of ameloblasts and odontoblasts with dentinal tubules, and IGFBP7 was mainly found in the whole cytoplasm of odontoblasts and the intercellular space of ameloblasts. IGFBP silencing using specific siRNAs upregulated representative genes for dentinogenesis and amelogenesis, such as DMP1 and amelogenin, respectively, and augmented the differentiation media-induced mineralization, which was confirmed by alizarin red s and alkaline phosphatase staining. These results suggest that IGFBP5-7 may play independent and redundant regulatory roles in late-stage odontogenesis by modulating the functional differentiation of ameloblasts and odontoblasts.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Odontogênese , Calcificação de Dente , Amelogênese/genética , Animais , Esmalte Dentário/metabolismo , Dentina/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Calcificação de Dente/genética , Germe de Dente/metabolismo , Regulação para Cima/genética
14.
ACS Appl Mater Interfaces ; 12(29): 33239-33245, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32602691

RESUMO

The physical properties of supramolecular soft materials strongly depend on the molecular packing structures constructed by thermodynamically and kinetically controlled molecular self-assembly. To investigate the relationship between molecular function and self-assembled molecular packing structure, a series of diacetylene (DA)-based supramolecules was synthesized by chemically connecting flexible dendrons to DA with amide (aDA-D) or ester (eDA-D) functions. The three-dimensional (3D) organogel network of amide-functionalized aDA-D was prepared in both polar and nonpolar solvents due to the intermolecular hydrogen bonding. 3D networks of aDA-D can be further stabilized by topochemical photopolymerization. The self-healing behavior of aDA-D was observed in the sheet-like structure formed in n-dodecane by the hydrophobic interaction between the gelator and solvent. The wringing behavior of aDA-D was also demonstrated using the dynamic interaction of amide function with n-butanol solvent. Kinetically controlled and photostabilized 3D networks can be a key component from biomedical devices to soft robotic applications.

15.
Nano Lett ; 20(7): 5376-5382, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32525687

RESUMO

Charge neutral, nonconjugated organic radicals have emerged as extremely useful active materials for solid-state electronic applications. This previous achievement confirmed the potential of radical-based macromolecules in organic electronic devices; however, charge transport in radical molecules has not been studied in great detail from a fundamental perspective. Here we demonstrate the charge transport in a nonconjugated organic small radical, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (h-TEMPO). The chemical component of this radical molecule allows us to form a single crystal via physical vapor deposition (PVD). While the charge transport of this macroscopic open-shell single crystal is rather low, thermal annealing of the well-defined single crystal enables the molecule to have a rapid charge transfer reaction due to the electronic communication of open-shell sites with each other, which results in electrical conductivities greater than 0.05 S m-1. This effort demonstrates a drastically different model than the commonly accepted conjugated polymers or molecules for the creation of next-generation conductors.

17.
Leuk Lymphoma ; 60(7): 1775-1781, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30507323

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been the only treatment option for acute myeloid leukemia (AML) refractory to induction chemotherapy, with only 10-20% of patients achieving long-term survival. Certain donor genotypes may confer leukemia-clearing effects after allo-HSCT. We performed whole-exome sequencing of five pairs of the germ lines in AML patients who achieved long-term remission after allo-HSCT and in their donors, and found two significant variants: EGFR c.2982C > T and CDH11 c.945G > A. To validate the protective effects of these leukemia-clearing genotypes (LCGs), AML patients who received allo-HSCT in a complete-remission status were also analyzed. Twenty-two of 96 donors (22.9%) had LCGs in their genomes, and overall survival was significantly longer in patients who received allo-HSCT from donors with germ-line LCGs (hazard ratio=0.47, 95% confidence interval=0.24-0.94, p = .033). These findings indicate that donor germ-line LCGs have phenotypically leukemia-clearing effects and are biomarkers for predicting clinical outcomes in allogeneic transplantation in AML patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Transplante de Células-Tronco Hematopoéticas/mortalidade , Leucemia Mieloide Aguda/mortalidade , Recidiva Local de Neoplasia/mortalidade , Doadores não Relacionados/estatística & dados numéricos , Adulto , Caderinas/genética , Terapia Combinada , Receptores ErbB/genética , Feminino , Seguimentos , Genótipo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Prognóstico , Indução de Remissão , Estudos Retrospectivos , Taxa de Sobrevida , Condicionamento Pré-Transplante , Transplante Homólogo , Sequenciamento do Exoma , Adulto Jovem
18.
Mol Cells ; 41(5): 465-475, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29764005

RESUMO

The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.


Assuntos
Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Adulto , Idoso , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Feminino , Regulação Leucêmica da Expressão Gênica , Ontologia Genética , Genes Reporter , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Nucleofosmina , Prognóstico , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
19.
ACS Macro Lett ; 7(5): 576-581, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632934

RESUMO

To develop light-triggered wringing gels, an asymmetric macrogelator (1AZ3BP) was newly synthesized by the chemically bridging a photoisomerizable azobenzene (1AZ) molecular machine and a biphenyl-based (3BP) dendron with a 1,4-phenylenediformamide connector. 1AZ3BP was self-assembled into a layered superstructure in the bulk state, but 1AZ3BP formed a three-dimensional (3D) network organogel in solution. Upon irradiating UV light onto the 3D network organogel, the solvent of the organogel was squeezed and the 3D network was converted to the layered morphology. It was realized that the metastable 3D network organogels were fabricated mainly due to the nanophase separation in solution. UV isomerization of 1AZ3BP provided sufficient molecular mobility to form strong hydrogen bonds for the construction of the stable layered superstructure. The light-triggered wringing gels can be smartly applied in remote-controlled generators, liquid storages, and sensors.

20.
Small ; 14(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134757

RESUMO

Since the molecular self-assembly of nanomaterials is sensitive to their surface properties, the molecular packing structure on the surface is essential to build the desired chemical and physical properties of nanomaterials. Here, a new nanosurfactant is proposed for the automatic construction of macroscopic surface alignment layer for liquid crystal (LC) molecules. An asymmetric nanosurfactant (C60 NS) consisted of mesogenic cyanobiphenyl moieties with flexible alkyl chains and a [60]fullerene nanoatom is newly designed and precisely synthesized. The C60 NS directly introduced in the anisotropic LC medium is self-assembled into the monolayered protrusions on the surface because of its amphiphilic nature originated by asymmetrically programmed structural motif of LC-favoring moieties and LC-repelling groups. The monolayered protrusions constructed by the phase-separation and self-assembly of asymmetric C60 NS nanosurfactant in the anisotropic LC media amplify and transfer the molecular orientational order from surface to bulk, and finally create the automatic vertical molecular alignment on the macroscopic length scale. The asymmetric C60 NS nanosurfactant and its self-assembly described herein can offer the direct guideline of interface engineering for the automatic molecular alignments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...